湍流的分析是融合等离子体物理学中的重要面积。目前的理论模型基于某些等离子体密度结构的演变量化湍流程度,称为Blob。在这项工作中,我们通过在合成数据上训练掩模R-CNN模型和合成和实际数据测试的掩模R-CNN模型,跟踪这些BLOB在高频视频数据中的形状和位置。因此,我们的模型有效地跟踪了合成和真实实验GPI数据的BLOB结构,显示其前景作为估计与Tokamak等离子体的边缘湍流相关的BloB统计的强大工具。
translated by 谷歌翻译
Problem instances of a size suitable for practical applications are not likely to be addressed during the noisy intermediate-scale quantum (NISQ) period with (almost) pure quantum algorithms. Hybrid classical-quantum algorithms have potential, however, to achieve good performance on much larger problem instances. We investigate one such hybrid algorithm on a problem of substantial importance: vehicle routing for supply chain logistics with multiple trucks and complex demand structure. We use reinforcement learning with neural networks with embedded quantum circuits. In such neural networks, projecting high-dimensional feature vectors down to smaller vectors is necessary to accommodate restrictions on the number of qubits of NISQ hardware. However, we use a multi-head attention mechanism where, even in classical machine learning, such projections are natural and desirable. We consider data from the truck routing logistics of a company in the automotive sector, and apply our methodology by decomposing into small teams of trucks, and we find results comparable to human truck assignment.
translated by 谷歌翻译
Neural networks struggle in continual learning settings from catastrophic forgetting: when trials are blocked, new learning can overwrite the learning from previous blocks. Humans learn effectively in these settings, in some cases even showing an advantage of blocking, suggesting the brain contains mechanisms to overcome this problem. Here, we build on previous work and show that neural networks equipped with a mechanism for cognitive control do not exhibit catastrophic forgetting when trials are blocked. We further show an advantage of blocking over interleaving when there is a bias for active maintenance in the control signal, implying a tradeoff between maintenance and the strength of control. Analyses of map-like representations learned by the networks provided additional insights into these mechanisms. Our work highlights the potential of cognitive control to aid continual learning in neural networks, and offers an explanation for the advantage of blocking that has been observed in humans.
translated by 谷歌翻译
高流量鼻腔插管(HFNC)为批判性儿童提供了非侵入性呼吸支持,这些儿童可能比其他非侵入性(NIV)技术更容易耐受。及时预测HFNC故障可以提供增加呼吸支持的指示。这项工作开发并比较了机器学习模型来预测HFNC故障。从2010年1月到2月20日至2月的患者EMR进行了患者EMR进行了回顾性研究。培训了长期内记忆(LSTM)模型,以产生连续预测HFNC故障。在HFNC启动后的各个时间使用接收器操作曲线(AUROC)下的区域评估性能。还评估了HFNC启动后2小时后预测的敏感性,特异性,正面和消极预测值(PPV,NPV)。这些指标也以主要呼吸诊断的群组计算。 834 HFNC试验[455培训,173次验证,206检验]符合纳入标准,其中175 [103,30,42](21.0%)升级至NIV或插管。具有转移学习的LSTM模型通常比LR模型更好地执行,最佳LSTM模型在启动后2小时实现0.78,VS 0.66的AUTOC。使用EMR数据培训的机器学习模型能够在发起24小时内识别出现在HFNC中失败的风险的风险。 LSTM模型结合了转移学习,输入数据持久性和合奏显示的性能提高了LR和标准LSTM模型。
translated by 谷歌翻译
Variational inference uses optimization, rather than integration, to approximate the marginal likelihood, and thereby the posterior, in a Bayesian model. Thanks to advances in computational scalability made in the last decade, variational inference is now the preferred choice for many high-dimensional models and large datasets. This tutorial introduces variational inference from the parametric perspective that dominates these recent developments, in contrast to the mean-field perspective commonly found in other introductory texts.
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) for semantic segmentation is a promising task freeing people from heavy annotation work. However, domain discrepancies in low-level image statistics and high-level contexts compromise the segmentation performance over the target domain. A key idea to tackle this problem is to perform both image-level and feature-level adaptation jointly. Unfortunately, there is a lack of such unified approaches for UDA tasks in the existing literature. This paper proposes a novel UDA pipeline for semantic segmentation that unifies image-level and feature-level adaptation. Concretely, for image-level domain shifts, we propose a global photometric alignment module and a global texture alignment module that align images in the source and target domains in terms of image-level properties. For feature-level domain shifts, we perform global manifold alignment by projecting pixel features from both domains onto the feature manifold of the source domain; and we further regularize category centers in the source domain through a category-oriented triplet loss and perform target domain consistency regularization over augmented target domain images. Experimental results demonstrate that our pipeline significantly outperforms previous methods. In the commonly tested GTA5$\rightarrow$Cityscapes task, our proposed method using Deeplab V3+ as the backbone surpasses previous SOTA by 8%, achieving 58.2% in mIoU.
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
The performance of inertial navigation systems is largely dependent on the stable flow of external measurements and information to guarantee continuous filter updates and bind the inertial solution drift. Platforms in different operational environments may be prevented at some point from receiving external measurements, thus exposing their navigation solution to drift. Over the years, a wide variety of works have been proposed to overcome this shortcoming, by exploiting knowledge of the system current conditions and turning it into an applicable source of information to update the navigation filter. This paper aims to provide an extensive survey of information aided navigation, broadly classified into direct, indirect, and model aiding. Each approach is described by the notable works that implemented its concept, use cases, relevant state updates, and their corresponding measurement models. By matching the appropriate constraint to a given scenario, one will be able to improve the navigation solution accuracy, compensate for the lost information, and uncover certain internal states, that would otherwise remain unobservable.
translated by 谷歌翻译